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UNIFYING VESTIBULO-OCULAR REFLEXES 

R. Wagner, H.L. Galiana 
Department of Biomedical Engineering, McGill University, QC, Canada 

Abstract –We present an eye/head gaze controller based on recent 
findings in biological gaze control. Despite the absence of an explicit 
VOR mechanism the model is able to (i) produce classical VOR 
responses and (ii) reject head perturbations during the saccadic 
portion of a gaze shift executed to a remembered target -- what is 
usually attributed to a separate vestibular mechanism. We argue 
that distinguishing between both types of responses is not justified, 
as each is a manifestation of one reflex system having different goals 
during the stages of gaze redirection. 
Keywords – VOR, vestibular, eye, head, gaze, oculomotor 

I. INTRODUCTION 

A reflex is a short-latency, involuntary response to a sensory 
stimulus. In principle, it helps a system continue to perform a 
given task in the presence of unexpected perturbations. The 
intrinsic reflex of the oculomotor system is known as the 
vestibulo-ocular reflex (VOR). It is classically defined as the 
counter-rotation of the eyes by the amount of head rotation, as 
sensed by the vestibular system, during the task of fixating a 
target. By this mechanism head motion is cancelled out by the 
resulting eye movement so that gaze in space remains on target 
(Fig. 1). In general, the VOR also helps preserve slow-phase 
gaze trajectories such as during target pursuit. 
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Fig. 1. A popular method of implementing the classical VOR mechanism within a 
gaze system. T, target angular rotation in space; E, eye angular rotation relative to 
head; H, head angular rotation relative to space. Note the ‘VOR box’ that 
explicitly implements a compensation scheme by subtracting head velocity from 
(planned) eye velocity. 

 Fig. 2 illustrates a gaze shift in which the eyes and head 
contribute to the trajectory. Note that the VOR definition treats 
head movement as an unwanted artifact that is first added to eye 
position in space (because the head carries the eyes) and then is 
subtracted out by the reflex. As a consequence of this, a gaze 
trajectory is expected to be invariant irrespective of whether or 
not the head moves. However, for large gaze shifts (> 50°, in 
man) this hypothesis is violated and it is classically believed that 
the VOR is off during the eye saccade and becomes active again 
when the visual axis is stabilized in space [2]. 

 Despite the evidence that the VOR is off during the saccadic 
portion of a gaze shift, vestibular information is not ignored 
during this segment. This is demonstrated in instances where 
gaze shifts are done in the dark to remembered targets in the 
presence of head perturbations (Fig. 3). Note that although the 

saccadic portion of the gaze trajectory is not preserved in the 
presence of perturbations, in general, the accuracy of gaze shifts 
under such trying conditions is remarkable [3]. Since vision 
could not assist in correcting for perturbations in the gaze 
trajectory, compensation could only be possible through the use 
of vestibular information. As such, it is classically believed that 
since the VOR is off or attenuated during saccades that another 
vestibular mechanism (VM) acts to achieve accurate gaze shifts. 
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Fig. 2. Example of a single-step, 40°, horizontal gaze shift using eye-head 
movements in a cat. E, eye angular rotation relative to the head. H and G, head 
and gaze angular rotations relative to space, G = E + H. OPN, omnipause neuron 
activity that gates slow and rapid movement. Morphologically, the gaze shift may 
be decomposed into two stages consisting of an initial fast, or saccadic phase 
(OPN silent) followed by a slow-phase, or fixation segment. The slow-phase 
portion begins approximately when the gaze stabilizes in space near peak eye 
position. (Adapted from [2], Fig. 6C.) 
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Fig. 3. Examples of the effect of unexpectedly restricting head motion while a 
human subject redirects gaze in the dark to a remembered target (flashed at 80° 
for 100ms). Striped bar under each graph indicates period over which a brake 
unexpectedly interrupted head motion. In both cases the brake occurred early in 
the head’s motion. In A braking considerably slowed down the head. In B braking 
immobilized the head. Arrows indicate peak gaze overshoot. (Adapted from [3], 
Fig. 6 B & C.) 

 The assumption that two, distinct, vestibular mechanisms are 
necessary to account for the above observations is prejudiced by 
two factors: (i) classical black-box modeling of the oculomotor 
control system with its extension to gaze control, and (ii) failure 
to distinguish the difference between the presence of a sensory 
reflex and its definition. 

 With regard to modeling, anatomical and physiological 
findings of biological gaze systems support an integrated 
approach to gaze control. One ramification of this is that classical 
VOR functionality can be achieved without explicitly 
implementing a VOR ‘box’. Furthermore, distributed 
connectivity allows one to implement the apparent separate 
vestibular mechanism required to model perturbed gaze shifts in 
the dark. 

 We will present a gaze controller with the above features. The 
ability to formulate a model void of an explicit VOR box 
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suggests that the contemporary definition of this reflex be re-
examined. Conceptually, the VOR is an ocular reflex evoked by 
vestibular stimulation. For that matter, the VM may be described 
in the same way. Recall the definition of a reflex at the start of 
this paper and note that the VM helps the gaze system perform a 
given task (the redirection of gaze) in the presence of unexpected 
perturbations. Hence, the VM, too, is a reflex; acting toward the 
same goal as the VOR but distinguished merely by the task that it 
assists. By defining the VOR with respect to context (i.e., 
defining it as the effect of the vestibular system on a task) then 
both classical VOR and VM may be unified as one phenomenon. 

II. METHODOLOGY 

A. Features of the gaze controller 

Fig. 4 shows the block diagram of the gaze controller used in this 
paper. Its aspects have been described in [2] and [8] and only 
salient points will be summarized here. 
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Fig. 4. Block diagram of the gaze controller. Dotted pathways represent visual 
feedback (disabled in this paper). Gains along branches have been omitted to 
improve readability. New symbol definitions: ∆G gaze error; T target in space; 
SC superior colliculus, integrating the sum of inputs; VN vestibular nucleus, a 
summing node with selectable pre- and post-summing gains; B burster neurons, 
active only during fast-phase; e motor error; D pre-motor drive; * superscript 
indicates efferent estimate; a dot above a variable indicates a time derivative. The 
perturbation input is a velocity input. A gaze shift to a remembered target is 
elicited by imposing an initial condition on the SC integrator and proceeding 
with the simulation. 

 When published, in 1992, the model represented the first 
concerted effort of synthesizing a gaze controller that 
incorporated recent physiological findings in biological gaze 
control. Yet, it was based on two assumptions that needed 
reconciliation. The first assumption, that the eye and head shared 
a common pre-motor drive, was upheld in 1996 with the 
discovery of (secondary) vestibulo-spinal neurons that carried 
eye movement-related signals [1]. The second assumption, that 
the superior colliculus (SC) was involved in coordinating slow-
phase eye movements (its role in saccadic movements was 
already established), was confirmed in 1997 with the report that 
the output of the SC encoded an error signal that was updated for 
both slow and rapid eye movements [4]. Thus, at present, the 

proposed controller topology remains unchallenged. With this in 
mind, we now summarize its key features. 

 ● Dual-modality control, slow and fast phases, is achieved by 
parameter switching. The OPN determines the appropriate 
operating modality based on the motor error. 

 ● The model makes extensive use of distributed signals. 
Vestibular information is distributed to two levels, the SC and 
VN. Motor error is distributed to three levels, the VN, B, and the 
head. And, finally, the pre-motor drive is distributed to two 
levels, the eye and head. 

 ● Since the output of a semicircular canal is high-pass-filtered 
head velocity, sensory information passing via the SC integrator 
becomes band-limited, whereas that passing through the VN 
retains its high-frequency content. Hence, one branch of the 
controller is suitable for low-frequency operation and the other 
for high-frequency operation. 

 ● Vestibular information is used by way of negative feedback. 
During the fast-phase modality the VN canal input is ignored 
(internally set to zero). 

 ● Servoing (without vision) is done exclusively on internal 
estimates of eye and head states. 

B. Measuring the VOR gain 

A popular method in the literature for measuring (head-free) 
VOR gain is to evaluate the instantaneous ratio of eye and head 
velocities. Though convenient as a method the result obtained is 
not related to VOR gain. We shall illustrate this using a 
traditional example and support an alternate method for 
estimating the gain, in general, at high frequencies. 
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Fig. 5. Illustration of the classical vestibulo-ocular reflex. (Idealized simulation.) 
VOR gain is –0.87. In these experiments head velocity, H, is made to vary in a 
sinusoidal manner which produces the resulting eye velocity profile, E, in steady 
state. It is worth noting that H is an independent variable and E is dependent. In 
principle, E(s)/H(s) is a high-pass transfer function. Avor = E/H is the 
instantaneous VOR gain. See text. 

 Fig. 5 shows the traditional head-fixed VOR. Given such an 
input-output pair, the VOR gain is almost universally evaluated 
as (Amplitude of E)/(Amplitude of H). This is perfectly fine, as E 
is the steady-state response of a linear system to a sinusoidal 
input, and the gain of a transfer function at a given frequency is 
defined precisely in this way. Avor is a function of time that 
attains ridiculous values. Clearly, Avor is a useless measure as 
far as VOR gain is concerned. Yet, inexplicably, it is often used 
to gauge VOR gain during head-free gaze shifts. The problem 
does not end here, however. 
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 During head-free gaze shifts directed towards a target, eye and 
head movements are correlated. That is, H is no longer an 
independent variable and E is no longer its dependent result; the 
independent variable is the gaze input that elicited the gaze shift. 
Under these conditions, all means of evaluating VOR gain by 
comparing eye and head trajectories produce biased results 
(especially the ill fated Avor method). In order to perform valid 
analyses, it is necessary to de-correlate eye-head movements [5]. 

 One approach is to momentarily perturb the head during the 
course of the elicited gaze shift and analyze the perturbations in 
the eye-head trajectories. Under the assumption of linearity, both 
eye and head trajectories will comprise a base-line response, 
elicited by the gaze input, superimposed with a perturbation 
component. Since the head perturbation is uncorrelated with the 
gaze input the base-line component may be de-trended from the 
composite eye and head trajectories leaving the perturbation 
components. With respect to the perturbation components, H is 
an independent input and E is its dependent output, which are 
appropriate conditions for an un-biased analysis. 

 In practice, the duration of perturbations is short. As such, this 
technique is useful mainly for probing systems at high 
frequencies. In a lab setting braking and tapping the head are two 
examples of suitable perturbations (e.g., [3, 7]).  

III. RESULTS 

Simulations have been carried out using MATLAB and 
SIMULINK1. In all figures, solid black bars under the horizontal 
axis indicate a fast-modality segment; striped bars indicate 
periods when head perturbations were applied. Note that only 
one parameter set has been used in all simulations and that the 
controller selected the operating modalities automatically. 

 The model produced classical VOR gain having a range of 
[-0.90, -0.77]. Results were obtained using sinusoidal 
perturbations after nullifying the ‘active’ head drive. Tests were 
performed at three target values, 0º, 60º, and 120º, with 
perturbation frequencies ranging from 1 to 20Hz and amplitudes 
10 and 400 deg/s. VOR gain values are comparable with 
published physiological data. 
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Fig. 6. Resulting gaze trajectories when the controller is restricted to operate in 
fast modality (dashed lines) and when free to select between slow and fast 
modalities (solid lines). 

 Fig. 6 compares gaze trajectories when the controller is frozen 
in fast-phase modality to those of when it is allowed to operate 

                                                           
1 Both available at http://www.mathworks.com 

normally. Note the minor differences between both cases 
following the fast-phase segment. Even more striking is that the 
eye can reverse direction during the fast-phase modality (note 
two reversals of dashed line2). Evidently, gaze trajectory alone 
does not reveal the extent of the saccadic portion of a gaze shift. 

 Fig. 7 shows an example of a gaze shift performed to a 
remembered target while the head is momentarily perturbed at 
two instances in time. The first perturbation occurs during the 
saccadic portion of the gaze shift, when the classical VOR is said 
to be off. Gaze gets on target nonetheless, and does so sooner 
since the perturbation accelerated the head in the direction of 
original motion. The second perturbation occurs during the 
fixation segment, where classical VOR is defined. The measured 
VOR gain from perturbed components is –0.89. 
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Fig. 7. Controller response when executing a 60º gaze shift, to a remembered 
target, in the presence of head perturbations. For reference, the dashed line shows 
the gaze trajectory when perturbations are absent. The perturbation profile is a 
sinusoid, ∆H = 600 sin(20πt) deg/s, gated to isolate portions of cycles. In the first 
perturbation, the head is accelerated with half a cycle. In the second one, the head 
is decelerated then accelerated over a full cycle. 
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Fig. 8. Examples of vestibular reflexes. In A, gaze end-point performance for 60° 
gaze shifts in the presence of various perturbations. The reference trajectory 
(dashed line) was obtained in the absence of perturbations. Circles indicate the 
end of the fast-phase segments, where the OPN determined that the gaze reached 
its target. The perturbation profile is half a cycle of a 10Hz sinusoid. Starting 
from the reference curve and moving outwards, the perturbation amplitudes are 
600, 1000, and 1500 deg/s. Curves below the reference had perturbations applied 
opposite to original head motion; those above the reference had perturbations 
applied in line with original head motion. In B, VOR gain measured during 
various stages of a 60° gaze shift using perturbation analysis. Single perturbation 
‘blips’ were applied at various times prior to and following the modality 
transition, at 0s. (I.e., the end-times of the saccadic portion of the gaze shifts are 
normalized to 0s.) Perturbation blips consisted of a full cycle of a 50Hz sinusoid 
with amplitude 10 deg/s. 

 Fig. 8 illustrates the performance of the vestibulo-ocular 
reflexes. Panel A illustrates that gaze end-points are robust in the 
presence of large perturbations (small vertical spread of circles). 
                                                           
2 The reversal at around 355ms is due to the use of a 2nd-order eye plant. 
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Hence, the vestibular reflex in this context is functioning well. 
As expected, gaze shifts take longer to execute when 
perturbations decelerate the head and terminate sooner when the 
perturbations accelerate the head toward the goal. Panel B shows 
measured classical VOR gains, confirming that during the 
saccadic portion of a gaze shift (t < 0) the gain is heavily 
attenuated. However, as expected, during the fixation segment 
(t > 0) the gain is high. Narrow perturbations were used in order 
allow probing of the VOR gain with a high resolution. 

IV. DISCUSSION 

In much of oculomotor literature, there is an apparent shared 
ideology that treats the (classical) VOR as a selectable task 
operating within a gaze control system. This would explain why 
many models implement the VOR function by explicitly 
subtracting head velocity from eye velocity. However, the 
manifestation of a sensory reflex bears no evidence as to its 
manner of implementation. Hence, the modeling problem is open 
to many alternatives. The model presented in this paper 
illustrates a different means of achieving vestibular reflexes as 
observed in biological systems. 

 In Fig. 4 there is a distinct lack of a VOR compensation 
mechanism, a ‘VOR block’ where H would be subtracted from E. 
Vestibular information is incorporated within the controller 
through two negative feedback loops. The loop through SC 
implements position control, whereas the loop through VN 
implements velocity control. Conceptually, both pathways 
correct the gaze trajectory by adjusting the goal by the amount of 
sensed head perturbation. Also, by virtue of the architecture, the 
controller inherently distinguishes between self-generated and 
externally induced sensory events. 

 During slow-phase segments, vestibular projections to SC and 
VN are active. As a result of the various elements in the model, 
position control works effectively at low frequencies, whereas 
velocity control works better for high frequencies. Hence the 
system is able to respond to high-frequency perturbations as in 
the classical VOR case. During fast-phase segments the VN 
projection is lost and the system is transformed into a high-
bandwidth position controller (by gain adjustments). Hence, akin 
to the vestibular mechanism mentioned in the introduction, 
saccadic goals are preserved in the presence of perturbations 
while the classical VOR is deficient. 

 Eye trajectory reversals are not necessarily due to classical 
VOR effects. As demonstrated in Fig. 8B, classical VOR is 
heavily attenuated during the saccadic portion of a gaze shift. Yet 
significant eye reversals can occur during such segments. (See 
Fig. 6.) Such behavior can be accounted for solely by having the 
eye and head plants form feedback loops driven by a shared 
motor drive3. Hence, the shared coordination of plants works 
synergistically with the vestibular system. 

                                                           
3 Skeptics can illustrate this to themselves by considering a position feedback 
system in which gaze error is fed to both eye and head plants, and where the gaze 
is compared against a reference gaze signal. As in nature, one plant (the eye) 
needs to be faster than the other  (the head) for a good effect. 

  Despite the rapid turn-on of the classical VOR near the end of 
the saccadic potion of a gaze shift (Fig. 8B), the VOR appears to 
be modulated more gradually in biological systems (e.g., [6]). 
One factor that could account for this is that, in our model, 
parameters change values between the two operating modalities 
within one millisecond. Biological systems cannot respond so 
rapidly. This is an area for future development. 

V. CONCLUSION 

Throughout this paper, we have maintained the distinction 
between the so-called VOR and VM for the sake of keeping in- 
step with contemporary nomenclature. However, in the presented 
model neither mechanism exists as an entity – though the 
reflexive response associated with each may be elicited. Hence, 
the distinction made between both mechanisms is a misleading 
fabrication, and is totally unnecessary. 

 Vestibular information is used at every instance of gaze 
coordination. Globally, it helps the gaze system perform a task in 
the presence of head perturbations. The type of vestibular 
response may be different depending on the goal that the gaze 
system strives to achieve, but the intent is universal: the rejection 
of head perturbations. 

 Hence, the term “VOR” should be recognized as the general 
term it really is: the reflexive response of the oculomotor system 
due to a vestibular sensory stimulus. 
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